使用Python通过E-utilities搜索pubmed并下载结果

E-utilities的介绍可以参考此处

第一种方法:构造url使用Entrez数据库检索

通过Python利用E-utilities来搜索和下载文献,一种方式是构造url,如:

#载入需要用到的包
import requests
import json
try:
    import xml.etree.cElementTree as ET
except ImportError:
    import xml.etree.ElementTree as ET
 
#构造检索式,获取相应检索结果的UID。首先指定检索数据库

db = "pubmed"

#在此处构造检索式,注意检索式的构造规则<https://www.ncbi.nlm.nih.gov/books/NBK25497/>
query = "Hsuan-Yu Chen" 

#Entrez数据库公用的base url
base = 'https://eutils.ncbi.nlm.nih.gov/entrez/eutils/' 

#url参数可查看:<https://www.ncbi.nlm.nih.gov/books/NBK25499/#chapter4.ESearch>

url = base + "esearch.fcgi?db=" + db + "&term=" + query + "&retmode=json"+ "&reldate=360&datetype=pdat" + "&retmax=100" + "&usehistory=y" 

#获取检索结果的UID列表
re = requests.get(url)
result = re.text
data = json.loads(result)
idlist = data["esearchresult"]["idlist"] #UID list
string = ""
number = len(idlist)
lastone = idlist[number - 1]
for item in idlist:
    if item == lastone:
        string = string + item
    else:
        string = string + item + ","

通过这种方式获得检索结果的UID列表后,再用UID构造url进行精确检索,并获取检索结果的题目、摘要等信息。这部分内容参考自:使用python來調用pubmed API快速整理文獻 – 我們的基因體時代 Our Generation

第二种方法:使用Biopython包的Entrez模块

参考《第9章 访问NCBI Entrez数据库 — Biopython-cn 0.1 文档》及Chapter 12 Accessing NCBI’s Entrez databases。这种方法首先需要pip install Biopython安装Biopython包;然后需要注册一个pubmed账户,最好再在账户里面创建一个API key。

下面是一个自己尝试的一个例子:

from Bio import Entrez

Entrez.email = "xx@xxx.com"  # Replace with your email
Entrez.api_key = "pubmed_APIkey"  # Replace with your API key
 
#构造检索式,获取检索结果的UID列表
db = "pubmed"
query = "oral cancer[Title/Abstract]" 

handle = Entrez.esearch(db="pubmed", term=query, retmax=2, retmode="xml", sort="pub_date", usehistory="y")
record = Entrez.read(handle)
id_list = record["IdList"]

#构造一个取回文献相关信息的函数,此处包括题目、发表时间、期刊名称以及摘要
def fetch_article_data(item):
    try:
        handle = Entrez.efetch(db="pubmed", id=item, retmode="xml")
        records = Entrez.read(handle)
        article = records['PubmedArticle'][0]
        Title = article['MedlineCitation']['Article']['ArticleTitle']
        Pubdate = article['MedlineCitation']['Article']['Journal']['JournalIssue']['PubDate']
        JournalTitle = article['MedlineCitation']['Article']['Journal']['Title']
        try:
            Abstract = " ".join(article['MedlineCitation']['Article']['Abstract']['AbstractText'])
        except KeyError:
            Abstract = "No Abstract Found"
        return Title, Abstract, Pubdate, Journatitle
    except Exception as e:
        print(f"Error: {e}")
    return "", "", 

#利用UID获取文献
totalnumber = len(id_list)
results = []
number = 0

for item in id_list:
    number = number + 1
    print(f"第{number}/{totalnumber}条 | Processing: {item}")
    Title, Abstract, Pubdate, Journatitle = fetch_article_data(item)
    sample = {"PMID":item, "PubDate and journal title":f"{Pubdate['Month']}, {Pubdate['Year']}. {JournalTitle}", "Title": Title, "Abstract":Abstract}
    results.append(sample)

print(results) #最终结果是UID中所有文献信息的列表

方法二和方法一相比,构造检索式更简单,而且通过API key可以获得更高的查询频率,同时会按照pubmed数据库的要求对查询频率自动进行限制。

通过方法二取回的records是一个json格式的文件。

这是这一文件的内容,可以拷贝后测试获取相应内容:

{‘PubmedArticle’: [{‘MedlineCitation’: DictElement({‘OtherID’: [], ‘OtherAbstract’: [], ‘InvestigatorList’: [], ‘CitationSubset’: [‘IM’], ‘SpaceFlightMission’: [], ‘GeneralNote’: [], ‘KeywordList’: [ListElement([StringElement(‘allogeneic stem cell transplant’, attributes={‘MajorTopicYN’: ‘N’}), StringElement(‘fungal’, attributes={‘MajorTopicYN’: ‘N’}), StringElement(‘hematology’, attributes={‘MajorTopicYN’: ‘N’}), StringElement(‘invasive’, attributes={‘MajorTopicYN’: ‘N’}), StringElement(‘mold’, attributes={‘MajorTopicYN’: ‘N’}), StringElement(‘prevention’, attributes={‘MajorTopicYN’: ‘N’}), StringElement(‘prophylaxis’, attributes={‘MajorTopicYN’: ‘N’})], attributes={‘Owner’: ‘NOTNLM’})], ‘PMID’: StringElement(‘37988269’, attributes={‘Version’: ‘1’}), ‘DateCompleted’: {‘Year’: ‘2023’, ‘Month’: ’12’, ‘Day’: ’11’}, ‘DateRevised’: {‘Year’: ‘2023’, ‘Month’: ’12’, ‘Day’: ’11’}, ‘Article’: DictElement({‘ArticleDate’: [DictElement({‘Year’: ‘2023’, ‘Month’: ’11’, ‘Day’: ’21’}, attributes={‘DateType’: ‘Electronic’})], ‘ELocationID’: [StringElement(‘10.1111/tid.14197’, attributes={‘EIdType’: ‘doi’, ‘ValidYN’: ‘Y’})], ‘Language’: [‘eng’], ‘Journal’: {‘ISSN’: StringElement(‘1399-3062’, attributes={‘IssnType’: ‘Electronic’}), ‘JournalIssue’: DictElement({‘Volume’: ’25 Suppl 1′, ‘PubDate’: {‘Year’: ‘2023’, ‘Month’: ‘Nov’}}, attributes={‘CitedMedium’: ‘Internet’}), ‘Title’: ‘Transplant infectious disease : an official journal of the Transplantation Society’, ‘ISOAbbreviation’: ‘Transpl Infect Dis’}, ‘ArticleTitle’: ‘Approach to diagnostic evaluation and prevention of invasive fungal disease in patients prior to allogeneic hematopoietic stem cell transplant.’, ‘Pagination’: {‘StartPage’: ‘e14197’, ‘MedlinePgn’: ‘e14197’}, ‘Abstract’: {‘AbstractText’: ["In recent years, advancements in the treatment landscape for hematological malignancies, such as acute myeloid leukemia and acute lymphoblastic leukemia, have significantly improved disease prognosis and overall survival. However, the treatment landscape is changing and the emergence of targeted oral therapies and immune-based treatments has brought forth new challenges in evaluating and preventing invasive fungal diseases (IFDs). IFD disproportionately affects immunocompromised hosts, particularly those undergoing therapy for acute leukemia and allogeneic hematopoietic stem cell transplant. This review aims to provide a comprehensive overview of the pretransplant workup, identification, and prevention of IFD in patients with hematological malignancy. The pretransplant period offers a critical window to assess each patient’s risk factors and implement appropriate prophylactic measures. Risk assessment includes evaluation of disease, host, prior treatments, and environmental factors, allowing a dynamic evaluation that considers disease progression and treatment course. Diagnostic screening, involving various biomarkers and radiological modalities, plays a crucial role in early detection of IFD. Antifungal prophylaxis choice is based on available evidence as well as individual risk assessment, potential for drug-drug interactions, toxicity, and patient adherence. Therapeutic drug monitoring ensures effective antifungal stewardship and optimal treatment. Patient education and counselling are vital in minimizing environmental exposures to fungal pathogens and promoting medication adherence. A well-structured and individualized approach, encompassing risk assessment, prophylaxis, surveillance, and patient education, is essential for effectively preventing IFD in hematological malignancies, ultimately leading to improved patient outcomes and overall survival."], ‘CopyrightInformation’: ‘© 2023 Wiley Periodicals LLC.’}, ‘AuthorList’: ListElement([DictElement({‘AffiliationInfo’: [{‘Identifier’: [], ‘Affiliation’: ‘Victorian Infectious Diseases Service, Royal Melbourne Hospital, Parkville, Victoria, Australia.’}], ‘Identifier’: [StringElement(‘0000-0002-0293-3221’, attributes={‘Source’: ‘ORCID’})], ‘LastName’: "O’Keeffe", ‘ForeName’: ‘Jessica C’, ‘Initials’: ‘JC’}, attributes={‘ValidYN’: ‘Y’}), DictElement({‘AffiliationInfo’: [{‘Identifier’: [], ‘Affiliation’: ‘Department of Infectious Diseases, Peter MacCallum Cancer Centre, Parkville, Victoria, Australia.’}, {‘Identifier’: [], ‘Affiliation’: ‘Department of Pharmacy, Peter MacCallum Cancer Centre, Parkville, Victoria, Australia.’}], ‘Identifier’: [StringElement(‘0009-0009-5264-2447’, attributes={‘Source’: ‘ORCID’})], ‘LastName’: ‘Singh’, ‘ForeName’: ‘Nikhil’, ‘Initials’: ‘N’}, attributes={‘ValidYN’: ‘Y’}), DictElement({‘AffiliationInfo’: [{‘Identifier’: [], ‘Affiliation’: ‘Victorian Infectious Diseases Service, Royal Melbourne Hospital, Parkville, Victoria, Australia.’}, {‘Identifier’: [], ‘Affiliation’: ‘Department of Infectious Diseases, Peter MacCallum Cancer Centre, Parkville, Victoria, Australia.’}, {‘Identifier’: [], ‘Affiliation’: ‘Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.’}], ‘Identifier’: [StringElement(‘0000-0002-8443-314X’, attributes={‘Source’: ‘ORCID’})], ‘LastName’: ‘Slavin’, ‘ForeName’: ‘Monica A’, ‘Initials’: ‘MA’}, attributes={‘ValidYN’: ‘Y’})], attributes={‘CompleteYN’: ‘Y’}), ‘PublicationTypeList’: [StringElement(‘Journal Article’, attributes={‘UI’: ‘D016428’}), StringElement(‘Review’, attributes={‘UI’: ‘D016454’})]}, attributes={‘PubModel’: ‘Print-Electronic’}), ‘MedlineJournalInfo’: {‘Country’: ‘Denmark’, ‘MedlineTA’: ‘Transpl Infect Dis’, ‘NlmUniqueID’: ‘100883688’, ‘ISSNLinking’: ‘1398-2273’}, ‘ChemicalList’: [{‘RegistryNumber’: ‘0’, ‘NameOfSubstance’: StringElement(‘Antifungal Agents’, attributes={‘UI’: ‘D000935’})}], ‘MeshHeadingList’: [{‘QualifierName’: [], ‘DescriptorName’: StringElement(‘Humans’, attributes={‘UI’: ‘D006801’, ‘MajorTopicYN’: ‘N’})}, {‘QualifierName’: [StringElement(‘therapeutic use’, attributes={‘UI’: ‘Q000627’, ‘MajorTopicYN’: ‘N’})], ‘DescriptorName’: StringElement(‘Antifungal Agents’, attributes={‘UI’: ‘D000935’, ‘MajorTopicYN’: ‘N’})}, {‘QualifierName’: [StringElement(‘drug therapy’, attributes={‘UI’: ‘Q000188’, ‘MajorTopicYN’: ‘N’})], ‘DescriptorName’: StringElement(‘Mycoses’, attributes={‘UI’: ‘D009181’, ‘MajorTopicYN’: ‘Y’})}, {‘QualifierName’: [StringElement(‘diagnosis’, attributes={‘UI’: ‘Q000175’, ‘MajorTopicYN’: ‘N’}), StringElement(‘drug therapy’, attributes={‘UI’: ‘Q000188’, ‘MajorTopicYN’: ‘N’}), StringElement(‘prevention & control’, attributes={‘UI’: ‘Q000517’, ‘MajorTopicYN’: ‘N’})], ‘DescriptorName’: StringElement(‘Invasive Fungal Infections’, attributes={‘UI’: ‘D000072742’, ‘MajorTopicYN’: ‘Y’})}, {‘QualifierName’: [StringElement(‘adverse effects’, attributes={‘UI’: ‘Q000009’, ‘MajorTopicYN’: ‘N’})], ‘DescriptorName’: StringElement(‘Hematopoietic Stem Cell Transplantation’, attributes={‘UI’: ‘D018380’, ‘MajorTopicYN’: ‘Y’})}, {‘QualifierName’: [StringElement(‘complications’, attributes={‘UI’: ‘Q000150’, ‘MajorTopicYN’: ‘N’})], ‘DescriptorName’: StringElement(‘Hematologic Neoplasms’, attributes={‘UI’: ‘D019337’, ‘MajorTopicYN’: ‘Y’})}]}, attributes={‘Status’: ‘MEDLINE’, ‘Owner’: ‘NLM’, ‘IndexingMethod’: ‘Automated’}), ‘PubmedData’: {‘ReferenceList’: [{‘Reference’: [{‘Citation’: ‘Chang CC, Blyth CC, Chen SCA, et\xa0al. Introduction to the updated Australasian consensus guidelines for the management of invasive fungal disease and use of antifungal agents in the haematology/oncology setting, 2021. Intern Med J. 2021;51(S7):3-17. doi:10.1111/imj.15585’}, {‘Citation’: ‘Teh BW, Yeoh DK, Haeusler GM, et\xa0al. Consensus guidelines for antifungal prophylaxis in haematological malignancy and haemopoietic stem cell transplantation, 2021. Intern Med J. 2021;51(S7):67-88. doi:10.1111/imj.15588’}, {‘Citation’: ‘Douglas AP, Slavin MA. Risk factors and prophylaxis against invasive fungal disease for haematology and stem cell transplant recipients: an evolving field. Expert Rev Anti Infect Ther. 2016;14(12):1165-1177. doi:10.1080/14787210.2016.1245613’}, {‘Citation’: ‘Lindsay J, Walti CS, Halpern AB, et\xa0al. Invasive fungal infections after CLAG-M/CLAG chemotherapy for acute myeloid leukemia and high-grade myeloid neoplasms. Blood Adv. 2023;7(13):3140-3145. doi:10.1182/bloodadvances.2022009562’}, {‘Citation’: ‘Bodey G, Buckley M, Sathe Y, Freireich E. Quantitative relationships between circulating Leukocytes and infection in patients with acute leukemia. Ann Intern Med. 1966;64(2):328-340. doi:10.7326/0003-4819-64-2-328’}, {‘Citation’: ‘Kantarjian H, Stein A, Gökbuget N, et\xa0al. Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia. N Engl J Med. 2017;376(9):836-847. doi:10.1056/NEJMoa1609783’}, {‘Citation’: ‘Lambert J, Pautas C, Terré C, et\xa0al. Gemtuzumab ozogamicin for de novo acute myeloid leukemia: final efficacy and safety updates from the open-label, phase III ALFA-0701 trial. Haematologica. 2019;104(1):113-119. doi:10.3324/haematol.2018.188888’}, {‘Citation’: ‘Kantarjian HM, DeAngelo DJ, Stelljes M, et\xa0al. Inotuzumab ozogamicin versus standard therapy for acute lymphoblastic leukemia. N Engl J Med. 2016;375(8):740-753. doi:10.1056/NEJMoa1509277’}, {‘Citation’: ‘Cattaneo C, Marchesi F, Terrenato I, et\xa0al. High incidence of invasive fungal diseases in patients with FLT3-mutated AML treated with Midostaurin: results of a multicenter observational SEIFEM study. J Fungi. 8:583. doi:10.3390/jof8060583’}, {‘Citation’: ‘Ballesta-López O, Solana-Altabella A, Megías-Vericat JE, Martínez-Cuadrón D, Montesinos P. Gilteritinib use in the treatment of relapsed or refractory acute myeloid leukemia with a FLT3 mutation. Future Oncol. 2021;17(2):215-227. doi:10.2217/fon-2020-0700’}, {‘Citation’: ‘Stein EM, DiNardo CD, Fathi AT, et\xa0al. Molecular remission and response patterns in patients with mutant-IDH2 acute myeloid leukemia treated with enasidenib. Blood. 2019;133(7):676-687. doi:10.1182/blood-2018-08-869008’}, {‘Citation’: ‘de Botton S, Montesinos P, Schuh AC, et\xa0al. Enasidenib vs conventional care in older patients with late-stage mutant-IDH2 relapsed/refractory AML: a randomized phase 3 trial. Blood. 2023;141(2):156-167. doi:10.1182/blood.2021014901’}, {‘Citation’: ‘DiNardo CD, Jonas BA, Pullarkat V, et\xa0al. Azacitidine and venetoclax in previously untreated acute myeloid leukemia. N Engl J Med. 2020;383(7):617-629. doi:10.1056/NEJMoa2012971’}, {‘Citation’: ‘Donnelly JP, Chen SC, Kauffman CA, et\xa0al. Revision and update of the consensus definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer and the mycoses Study Group Education and Research Consortium. Clin Infect Dis. 2020;71(6):1367-1376. doi:10.1093/cid/ciz1008’}, {‘Citation’: ‘Tio S, Chen S, Hamilton K, et\xa0al. Invasive Aspergillosis in Adult Patients in Australia and New Zealand: 2017-2020. Lancet Reg Health West Pac. 2023;40:100888. doi:10.2139/ssrn.4438000’}, {‘Citation’: ‘Lindsay J, Teh BW, Micklethwaite K, Slavin M. Azole antifungals and new targeted therapies for hematological malignancy. Curr Opin Infect Dis. 2019;32(6):538-545. https://journals.lww.com/co-infectiousdiseases/Fulltext/2019/12000/Azole_antifungals_and_new_targeted_therapies_for.4.aspx’}, {‘Citation’: ‘Pagano L, Busca A, Candoni A, et\xa0al. Risk stratification for invasive fungal infections in patients with hematological malignancies: SEIFEM recommendations. Blood Rev. 2017;31(2):17-29. doi:10.1016/j.blre.2016.09.002’}, {‘Citation’: ‘Bassetti M, Azoulay E, Kullberg BJ, et\xa0al. EORTC/MSGERC definitions of invasive fungal diseases: Summary of activities of the intensive care unit working group. Clin Infect Dis. 2021;72(2):S121-S127. doi:10.1093/cid/ciaa1751’}, {‘Citation’: ‘Montagna M, Lovero G, Coretti C, Martinelli D. SIMIFF study: Italian fungal registry of mold infections in hematological and non-hematological patients. Infection. 2014;42(1):141-151. doi:10.1007/s15010-013-0539-3’}, {‘Citation’: ‘Tang JL, Kung HC, Lei WC, et\xa0al. High incidences of invasive fungal infections in acute myeloid leukemia patients receiving induction chemotherapy without systemic antifungal prophylaxis: a prospective observational study in Taiwan. PLoS ONE. 2015;10(6):e0128410. doi:10.1371/journal.pone.0128410’}, {‘Citation’: ‘Neofytos D, Lu K, Hatfield-Seung A, et\xa0al. Epidemiology, outcomes, and risk factors of invasive fungal infections in adult patients with acute myelogenous leukemia after induction chemotherapy. Diagn Microbiol Infect Dis. 2013;75(2):144-149. doi:10.1016/j.diagmicrobio.2012.10.001’}, {‘Citation’: ‘Wasylyshyn AI, Linder KA, Kauffman CA, et\xa0al. Invasive fungal disease in patients with newly diagnosed acute myeloid leukemia. J Fungi. 2021;7(9):761. doi:10.3390/jof7090761’}, {‘Citation’: ‘Caira M, Candoni A, Verga L, et\xa0al. Pre-chemotherapy risk factors for invasive fungal diseases: prospective analysis of 1,192 patients with newly diagnosed acute myeloid leukemia (SEIFEM 2010-a multicenter study). Haematologica. 2015;100(2):284-292. doi:10.3324/haematol.2014.113399’}, {‘Citation’: ‘Teng J, Slavin M, Teh B, et\xa0al. Epidemiology of invasive fungal disease in lymphoproliferative disorders. Haematologica. 2015;100(11):e462-e466. doi:10.3324/haematol.2015.126698’}, {‘Citation’: ‘Doan TN, Kirkpatrick CMJ, Walker P, et\xa0al. Primary antifungal prophylaxis in adult patients with acute lymphoblastic leukaemia: a multicentre audit. J Antimicrob Chemother. 2016;71(2):497-505. doi:10.1093/jac/dkv343’}, {‘Citation’: ‘Henden A, Morris K, Truloff N, Nakagaki M, Kennedy GA. Incidence and outcomes of invasive fungal disease in adult patients with acute lymphoblastic leukemia treated with hyperfractionated cyclophosphamide, vincristine, doxorubicin and dexamethasone: implications for prophylaxis. Leuk Lymphoma. 2013;54(6):1329-1331. doi:10.3109/10428194.2012.740561’}, {‘Citation’: ‘Salama H, Eldadah S, Omer MH, et\xa0al. Comparison of a modified pediatric protocol versus a hyper-CVAD protocol in adolescents and young adults with Philadelphia-negative acute lymphoblastic leukemia: a multicenter retrospective analysis. Leuk Res. 2023;130:107316. doi:10.1016/j.leukres.2023.107316’}, {‘Citation’: ‘Fianchi L, Leone G, Posteraro B, et\xa0al. Impaired bactericidal and fungicidal activities of neutrophils in patients with myelodysplastic syndrome. Leuk Res. 2012;36(3):331-333. doi:10.1016/j.leukres.2011.11.012’}, {‘Citation’: ‘Garcia-Vidal C, Upton A, Kirby K, Marr K. Epidemiology of invasive mold infections in allogeneic stem cell transplant recipients: biological risk factors for infection according to time after transplantation. Clin Infect Dis. 2008;47(8):1041-1050.’}, {‘Citation’: ‘Mikulska M, Raiola AM, Bruno B, et\xa0al. Risk factors for invasive aspergillosis and related mortality in recipients of allogeneic SCT from alternative donors: an analysis of 306 patients. Bone Marrow Transplant. 2009;44(6):361-370. doi:10.1038/bmt.2009.39’}, {‘Citation’: ‘Gerson S, Talbot G, Hurwitz S, Strom B, Lusk E, Cassileth P. Prolonged granulocytopenia: The major risk factor for invasive pulmonary Aspergillosis in patients with acute leukemia. Ann Intern Med. 1984;100(3):345-351. doi:10.7326/0003-4819-100-3-345’}, {‘Citation’: ‘Prentice HG, Kibbler ChriSC, Prentice ArchiEG. Towards a targeted, risk-based, antifungal strategy in neutropenic patients. Br J Haematol. 2000;110(2):273-284. doi:10.1046/j.1365-2141.2000.02014.x’}, {‘Citation’: ‘Marr KA, Carter RA, Boeckh M, Martin P, Corey L. Invasive aspergillosis in allogeneic stem cell transplant recipients: changes in epidemiology and risk factors. Blood. 2002;100(13):4358-4366. doi:10.1182/blood-2002-05-1496’}, {‘Citation’: ‘Omer AK, Ziakas PD, Anagnostou T, et\xa0al. Risk factors for invasive fungal disease after allogeneic hematopoietic stem cell transplantation: a single center experience. Biol Blood Marrow Transplant. 2013;19(8):1190-1196. doi:10.1016/j.bbmt.2013.05.018’}, {‘Citation’: ‘Girmenia C, Raiola AM, Piciocchi A, et\xa0al. Incidence and outcome of invasive fungal diseases after allogeneic stem cell transplantation: a prospective study of the Gruppo Italiano Trapianto Midollo Osseo (GITMO). Biol Blood Marrow Transplant. 2014;20(6):872-880. doi:10.1016/j.bbmt.2014.03.004’}, {‘Citation’: ‘Cornet M, Levy V, Fleury L, et\xa0al. Efficacy of prevention by high-efficiency particulate air filtration or laminar airflow against Aspergillus airborne contamination during hospital renovation. Infect Control Hosp Epidemiol. 1999;20(7):508-513. doi:10.1086/501661’}, {‘Citation’: ‘Weems JJ, Davis B, Tablan O, Kaufman L. Construction activity: an independent risk factor for invasive aspergillosis and zygomycosis in patients with hematologic malignancy. Infect Control. 1987;8(2):71-75.’}, {‘Citation’: ‘Oren I, Haddad N, Finkelstein R, Rowe JM. Invasive pulmonary aspergillosis in neutropenic patients during hospital construction: Before and after chemoprophylaxis and institution of HEPA filters. Am J Hematol. 2001;66(4):257-262. doi:10.1002/ajh.1054’}, {‘Citation’: ‘Fukuda T, Boeckh M, Guthrie KA, et\xa0al. Invasive aspergillosis before allogeneic hematopoietic stem cell transplantation: 10-year experience at a single transplant center. Biol Blood Marrow Transplant. 2004;10(7):494-503. doi:10.1016/j.bbmt.2004.02.006’}, {‘Citation’: ‘Thursky K, Byrnes G, Grigg A, Szer J, Slavin M. Risk factors for post-engraftment invasive aspergillosis in allogeneic stem cell transplantation. Bone Marrow Transplant. 2004;34(2):115-121. doi:10.1038/sj.bmt.1704543’}, {‘Citation’: ‘Corzo-León DE, Satlin MJ, Soave R, et\xa0al. Epidemiology and outcomes of invasive fungal infections in allogeneic haematopoietic stem cell transplant recipients in the era of antifungal prophylaxis: a single-centre study with focus on emerging pathogens. Mycoses. 2015;58(6):325-336. doi:10.1111/myc.12318’}, {‘Citation’: ‘Stanzani M, Lewis RE, Fiacchini M, et\xa0al. A risk prediction score for invasive mold disease in patients with hematological malignancies. PLoS ONE. 2013;8(9):e75531. doi:10.1371/journal.pone.0075531’}, {‘Citation’: ‘Ceesay MM, Desai SR, Berry L, et\xa0al. A comprehensive diagnostic approach using galactomannan, targeted β-d-glucan, baseline computerized tomography and biopsy yields a significant burden of invasive fungal disease in at risk haematology patients. Br J Haematol. 2015;168(2):219-229. doi:10.1111/bjh.13114’}, {‘Citation’: ‘Brenier-Pinchart MP, Lebeau B, Quesada JL, et\xa0al. Influence of internal and outdoor factors on filamentous fungal flora in hematology wards. Am J Infect Control. 2009;37(8):631-637. doi:10.1016/j.ajic.2009.03.013’}, {‘Citation’: ‘Panackal AA, Li H, Kontoyiannis DP, et\xa0al. Geoclimatic influences on invasive aspergillosis after hematopoietic stem cell transplantation. Clin Infect Dis. 2010;50(12):1588-1597. doi:10.1086/652761’}, {‘Citation’: ‘Heng SC, Chen SCA, Morrissey CO, et\xa0al. Clinical utility of Aspergillus galactomannan and PCR in bronchoalveolar lavage fluid for the diagnosis of invasive pulmonary aspergillosis in patients with haematological malignancies. Diagn Microbiol Infect Dis. 2014;79(3):322-327. doi:10.1016/j.diagmicrobio.2014.03.020’}, {‘Citation’: ‘Thursky KA, Worth LJ, Seymour JF, Miles Prince H, Slavin MA. Spectrum of infection, risk and recommendations for prophylaxis and screening among patients with lymphoproliferative disorders treated with alemtuzumab*. Br J Haematol. 2006;132(1):3-12. doi:10.1111/j.1365-2141.2005.05789.x’}, {‘Citation’: ‘Blum G, Eschertzhuber S, Auberger J, et\xa0al. Airborne fungus exposure prior to hospitalisation as risk factor for mould infections in immunocompromised patients. Mycoses. 2012;55(3):237-243. doi:10.1111/j.1439-0507.2011.02073.x’}, {‘Citation’: ‘Ozyilmaz E, Aydogdu M, Sucak G, et\xa0al. Risk factors for fungal pulmonary infections in hematopoietic stem cell transplantation recipients: the role of iron overload. Bone Marrow Transplant. 2010;45(10):1528-1533. doi:10.1038/bmt.2009.383’}, {‘Citation’: ‘Herbrecht R, Bories P, Moulin JC, Ledoux MP, Letscher-Bru V. Risk stratification for invasive aspergillosis in immunocompromised patients. Ann N Y Acad Sci. 2012;1272(1):23-30. doi:10.1111/j.1749-6632.2012.06829.x’}, {‘Citation’: ‘Bochud B, Chein J, Marr K, Leisenring W. Toll-like receptor 4 polymorphisms and aspergillosis in stem-cell transplantation. N Engl J Med. 2008;359(17):1766-1777.’}, {‘Citation’: ‘Carvalho A, Cunha C, Carotti A, et\xa0al. Polymorphisms in Toll-like receptor genes and susceptibility to infections in allogeneic stem cell transplantation. Exp Hematol. 2009;37(9):1022-1029. doi:10.1016/j.exphem.2009.06.004’}, {‘Citation’: ‘Cunha C, Di Ianni M, Bozza S, et\xa0al. Dectin-1 Y238X polymorphism associates with susceptibility to invasive aspergillosis in hematopoietic transplantation through impairment of both recipient- and donor-dependent mechanisms of antifungal immunity. Blood. 2010;116(24):5394-5402. doi:10.1182/blood-2010-04-279307’}, {‘Citation’: ‘Chai L, de Boer M, van der Velden W, Plantinga T. The Y238X stop codon polymorphism in the human β-glucan receptor dectin-1 and susceptibility to invasive aspergillosis. J Infect Dis. 2011;203(5):736-743.’}, {‘Citation’: ‘Cunha C, Aversa F, Lacerda JF, et\xa0al. Genetic PTX3 deficiency and aspergillosis in stem-cell transplantation. N Engl J Med. 2014;370(5):421-432. doi:10.1056/NEJMoa1211161’}, {‘Citation’: ‘Petrikkos G, Tsioutis C. Recent advances in the pathogenesis of mucormycoses. Clin Ther. 2018;40(6):894-902. doi:10.1016/j.clinthera.2018.03.009’}, {‘Citation’: ‘Garnica M, Oliveira da Cunha M, Portugal R, Maiolino A, Colombo AL, Nucci M. Risk factors for invasive fusariosis in patients with acute myeloid leukemia and in hematopoietic cell transplant recipients. Clin Infect Dis. 2015;60(6):875-880. doi:10.1093/cid/ciu947’}, {‘Citation’: ‘Kontoghiorghes GJ, Kolnagou A, Skiada A, Petrikkos G. The role of iron and chelators on infections in iron overload and non iron loaded conditions: prospects for the design of new antimicrobial therapies. Hemoglobin. 2010;34(3):227-239. doi:10.3109/03630269.2010.483662’}, {‘Citation’: ‘Apostolidi E, Gamaletsou M, Arapaki M, et\xa0al. Bone marrow iron stores are not associated with increased risk for invasive fungal infections in patients with newly diagnosed acute leukemia or myelodysplastic syndrome in transformation: is there a relationship? J Fungi. 2023;9:748.’}, {‘Citation’: ‘Teh BW, Teng JC, Urbancic K, et\xa0al. Invasive fungal infections in patients with multiple myeloma: a multi-center study in the era of novel myeloma therapies. Haematologica. 2015;100(1):e28-e31. doi:10.3324/haematol.2014.114025’}, {‘Citation’: ‘Therapeutic Goods Administration. Australian production information-azacitidine powder for injection. Published online 2022.’}, {‘Citation’: ‘eviQ. Haematology and BMT protocols. Published online 2023. https://www.eviq.org.au/haematology-and-bmt’}, {‘Citation’: ‘Therapeutic Goods Administration. Australian product information venclexta (venetoclax) film-coated tablets. Published online 2021.’}, {‘Citation’: ‘eviQ. Antifungal prophylaxis in immunocompromised adults. Published online 2022. https://www.eviq.org.au/clinical-resources/side-effect-and-toxicity-management/prophylaxis-and-treatment/1604-antifungal-prophylaxis-in-immunocompromised-a#:~:text=Amphotericin%20%E2%80%93%20practice%20points&text=Some%20centres%20use%20a%20dose,week%20based%20on%20previous%20guidelines.&text=Other%20dosing%20schedules%20used%20in,5mg%2Fkg%20twice%20a%20week’}, {‘Citation’: ‘Therapeutic Goods Administration. Australian Product Information Cytarabine ACC and Cytarabine ACCORD Solution for Injection. Published online 2019.’}, {‘Citation’: ‘Cornely OA, Böhme A, Reichert D, et\xa0al. Risk factors for breakthrough invasive fungal infection during secondary prophylaxis. J Antimicrob Chemother. 2008;61(4):939-946. doi:10.1093/jac/dkn027’}, {‘Citation’: ‘Bow EJ, Loewen R, Cheang MS, Schacter B. Invasive fungal disease in adults undergoing remission-induction therapy for acute Myeloid Leukemia: The Pathogenetic role of the Antileukemic Regimen. Clin Infect Dis. 1995;21(2):361-369. doi:10.1093/clinids/21.2.361’}, {‘Citation’: ‘Therapeutic Goods Administration. Australian Product Information Zavedos Idarubicin Hydrochloride. Published online 2022.’}, {‘Citation’: ‘Therapeutic Goods Administration. Australian Product Information Xospata Gilteritinib Fumarate Film-Coated Tablets. Published online 2020.’}, {‘Citation’: ‘Therapeutic Goods Administration. Australian Product Information Midostaurin Capsules. Published online 2019.’}, {‘Citation’: ‘Gold JAW, Tolu SS, Chiller T, Benedict K, Jackson BR. Incidence of invasive fungal infections in patients initiating ibrutinib and other small molecule kinase inhibitors-United States, July 2016-June 2019. Clin Infect Dis. 2022;75(2):334-337. doi:10.1093/cid/ciab1026’}, {‘Citation’: ‘Phoompoung P, Henry B, Daher-Reyes G, Sibai H, Husain S. Invasive mold infections in FLT3-mutated acute myeloid leukemia. Clin Lymphoma Myeloma Leuk. 2021;21(5):e477-e482. doi:10.1016/j.clml.2020.10.014’}, {‘Citation’: ‘Therapeutic Goods Administration. Australian Product Information-Blincyto Blinatumomab Pwder For Injection. Published online 2022.’}, {‘Citation’: ‘Therapeutic Goods Administration. Australian Product Information Dasatinib TEVA. Published online 2021.’}, {‘Citation’: ‘Therapeutic Goods Administration. Australian Product Information Cipla Imatinib Adult Capsules. Published online 2022.’}, {‘Citation’: ‘Kontoyiannis DP, Marr KA, Park BJ, et\xa0al. Prospective surveillance for invasive fungal infections in hematopoietic stem cell transplant recipients, 2001-2006: Overview of the Transplant-Associated Infection Surveillance Network (TRANSNET) Database. Clin Infect Dis. 2010;50(8):1091-1100. doi:10.1086/651263’}, {‘Citation’: ‘Ajmal S, Mahmood M, Abu Saleh O, Larson J, Sohail MR. Invasive fungal infections associated with prior respiratory viral infections in immunocompromised hosts. Infection. 2018;46(4):555-558. doi:10.1007/s15010-018-1138-0’}, {‘Citation’: ‘Crum-Cianflone NF. Invasive aspergillosis associated with severe influenza infections. Open Forum Infect Dis. 2016;3(3):ofw171. doi:10.1093/ofid/ofw171’}, {‘Citation’: ‘Lat A, Bhadelia N, Miko B, Furuya EY, Thompson GR. Invasive aspergillosis after pandemic (H1N1) 2009. Emerg Infect Dis J. 2010;16(6):971. doi:10.3201/eid1606.100165’}, {‘Citation’: ‘Hlaing K, Monday L, Nucci M, Nouér S, Revankar S. Invasive fungal infections associated with COVID-19. J Fungi. 2023;9(6):667. doi:10.3390/jof9060667’}, {‘Citation’: ‘Yong MK, Slavin MA, Kontoyiannis DP. Invasive fungal disease and cytomegalovirus infection: is there an association? Curr Opin Infect Dis. 2018;31(6). https://journals.lww.com/co-infectiousdiseases/Fulltext/2018/12000/Invasive_fungal_disease_and_cytomegalovirus.4.aspx’}, {‘Citation’: ‘Yong MK, Ananda-Rajah M, Cameron PU, et\xa0al. Cytomegalovirus reactivation is associated with increased risk of late-onset invasive fungal disease after allogeneic hematopoietic stem cell transplantation: a multicenter study in the current era of viral load monitoring. Biol Blood Marrow Transplant. 2017;23(11):1961-1967. doi:10.1016/j.bbmt.2017.07.025’}, {‘Citation’: ‘Terrero-Salcedo D, Powers-Fletcher MV. Updates in laboratory diagnostics for invasive fungal infections. J Clin Microbiol. 2020;58(6):e01487-19 doi:10.1128/jcm.01487-19’}, {‘Citation’: ‘Youngster I, Sharma TS, Duncan CN, McAdam AJ. Yield of fungal surveillance cultures in pediatric hematopoietic stem cell transplant patients: a retrospective analysis and survey of current practice. Clin Infect Dis. 2014;58(3):365-371. doi:10.1093/cid/cit728’}, {‘Citation’: ‘Ruhnke M, Behre G, Buchheidt D, et\xa0al. Diagnosis of invasive fungal diseases in haematology and oncology: 2018 update of the recommendations of the infectious diseases working party of the German society for hematology and medical oncology (AGIHO). Mycoses. 2018;61(11):796-813. doi:10.1111/myc.12838’}, {‘Citation’: ‘Bupha-Intr O, Butters C, Reynolds G, et\xa0al. Consensus guidelines for the diagnosis and management of invasive fungal disease due to moulds other than Aspergillus in the haematology/oncology setting, 2021. Intern Med J. 2021;51(S7):177-219. doi:10.1111/imj.15592’}, {‘Citation’: ‘Cruciani M, Mengoli C, Barnes R, et\xa0al. Polymerase chain reaction blood tests for the diagnosis of invasive aspergillosis in immunocompromised people. Cochrane Database Syst Rev. 2019;9(9):CD009551. doi:10.1002/14651858.CD009551.pub4’}, {‘Citation’: ‘Huygens S, Dunbar A, Buil JB, et\xa0al. Clinical impact of polymerase chain reaction-based Aspergillus and Azole resistance detection in invasive Aspergillosis: a prospective multicenter study. Clin Infect Dis. 2023;77(1):38-45. doi:10.1093/cid/ciad141’}, {‘Citation’: ‘Cruciani M, White PL, Mengoli C, et\xa0al. The impact of anti-mould prophylaxis on Aspergillus PCR blood testing for the diagnosis of invasive aspergillosis. J Antimicrob Chemother. 2021;76(3):635-638. doi:10.1093/jac/dkaa498’}, {‘Citation’: ‘Marios A, Theodora A, Burgwyn FB, Caliendo Angela M, Eleftherios M. Molecular and nonmolecular diagnostic methods for invasive fungal infections. Clin Microbiol Rev. 2014;27(3):490-526. doi:10.1128/cmr.00091-13’}, {‘Citation’: ‘Jenks J, Miceli M, Prattes J, Mercier T, Hoenigl M. The Aspergillus lateral flow assay for the diagnosis of invasive Aspergillosis: an update. Curr Fungal Infect Rep. 2020;14(4):378-383. doi:10.1007/s12281-020-00409-z’}, {‘Citation’: ‘Hoenigl M, Egger M, Boyer J, Schulz E, Prattes J, Jenks JD. Serum Lateral Flow assay with digital reader for the diagnosis of invasive pulmonary aspergillosis: A two-centre mixed cohort study. Mycoses. 2021;64(10):1197-1202. doi:10.1111/myc.13352’}, {‘Citation’: ‘Thompson GR III, Boulware DR, Bahr NC, et\xa0al. Noninvasive testing and surrogate markers in invasive fungal diseases. Open Forum Infect Dis. 2022;9(6):ofac112. doi:10.1093/ofid/ofac112’}, {‘Citation’: ‘Kidd S, Chen S, Meyer W, Halliday C. A new age in molecular diagnostics for invasive fungal disease: are we ready? Front Microbiol. 2020;10(2903):1-20. doi:10.3389/fmicb.2019.02903’}, {‘Citation’: ‘White PL, Wingard JR, Bretagne S, et\xa0al. Aspergillus polymerase chain reaction: Systematic review of evidence for clinical use in comparison with antigen testing. Clin Infect Dis. 2015;61(8):1293-1303. doi:10.1093/cid/civ507’}, {‘Citation’: ‘Jiang X, Jiang Y, Ye F. Detection and identification of Mucorales and Aspergillus in paraffin-embedded samples by real-time quantitative PCR. Front Cell Infect Microbiol. 2023;13:1082347. doi:10.3389/fcimb.2023.1082347’}, {‘Citation’: ‘Garnham K, Halliday CL, Rai NJ, et\xa0al. Introducing 1,3-beta-d-glucan for screening and diagnosis of invasive fungal diseases in Australian high-risk haematology patients: is there a clinical benefit? Intern Med J. 2022;52(3):426-435. doi:10.1111/imj.15046’}, {‘Citation’: ‘Lamoth F, Nucci M, Fernandez-Cruz A, et\xa0al. Performance of the beta-glucan test for the diagnosis of invasive fusariosis and scedosporiosis: a meta-analysis. Med Mycol. 2023;61(7):myad061. doi:10.1093/mmy/myad061’}, {‘Citation’: ‘Prattes J, Raggam RB, Vanstraelen K, et\xa0al. Chemotherapy-induced intestinal mucosal barrier damage: a cause of falsely elevated serum 1,3-beta-d-glucan levels? J Clin Microbiol. 2016;54(3):798-801. doi:10.1128/jcm.02972-15’}, {‘Citation’: ‘Lewis RE, Stanzani M, Morana G, Sassi C. Radiology-based diagnosis of fungal pulmonary infections in high-risk hematology patients: are we making progress? Curr Opin Infect Dis. 2023;36(4):250-256. https://journals.lww.com/co-infectiousdiseases/Fulltext/2023/08000/Radiology_based_diagnosis_of_fungal_pulmonary.7.aspx’}, {‘Citation’: ‘Ceesay MM, Desai SR, Cleverley J, et\xa0al. Pre-symptomatic (Baseline) computed tomography predicts invasive pulmonary aspergillosis in high-risk adult haemato-oncology patients. Br J Haematol. 2018;182(5):723-727. doi:10.1111/bjh.14858’}, {‘Citation’: ‘Stemler J, Bruns C, Mellinghoff S, Alakel N. Baseline chest computed tomography as standard of care in high-risk hematology patients. J Fungi. 2020;6(1):36. doi:10.3390/2Fjof6010036’}, {‘Citation’: ‘Sharma R, Singh C, Khadwal A, et\xa0al. Role of pre-transplant chest high-resolution computed tomography and serum galactomannan index in predicting post-transplant invasive pulmonary aspergillosis in allogeneic hematopoietic cell transplant recipients. Transpl Infect Dis. 2021;23(4):e13632. doi:10.1111/tid.13632’}, {‘Citation’: ‘Sanguinetti M, Posteraro B, Beigelman-Aubry C, et\xa0al. Diagnosis and treatment of invasive fungal infections: looking ahead. J Antimicrob Chemother. 2019;74(Supplement_2):ii27-ii37. doi:10.1093/jac/dkz041’}, {‘Citation’: ‘Harris B, Geyer AI. Diagnostic evaluation of pulmonary abnormalities in patients with hematologic malignancies and hematopoietic cell transplantation. Pulm Dis Non-Pulm Malig. 2017;38(2):317-331. doi:10.1016/j.ccm.2016.12.008’}, {‘Citation’: ‘Douglas AP, Thursky KA, Worth LJ, et\xa0al. FDG PET/CT imaging in detecting and guiding management of invasive fungal infections: a retrospective comparison to conventional CT imaging. Eur J Nucl Med Mol Imaging. 2019;46(1):166-173. doi:10.1007/s00259-018-4062-8’}, {‘Citation’: ‘Ankrah AO, Lawal IO, Dierckx RAJO, Sathekge MM, Glaudemans AWJM. Imaging of invasive fungal infections- the role of PET/CT. Infect Inflamm Part I. 2023;53(1):57-69. doi:10.1053/j.semnuclmed.2022.07.003’}, {‘Citation’: ‘Khanina A, Tio SY, Ananda-Rajah MR, et\xa0al. Consensus guidelines for antifungal stewardship, surveillance and infection prevention, 2021. Intern Med J. 2021;51(S7):18-36. doi:10.1111/imj.15586’}, {‘Citation’: ‘Ong CW, Chen SCA, Clark JE, et\xa0al. Diagnosis, management and prevention of Candida auris in hospitals: position statement of the Australasian Society for Infectious Diseases. Intern Med J. 2019;49(10):1229-1243. doi:10.1111/imj.14612’}, {‘Citation’: ‘Fernando SS, Paige EK, Dendle C, et\xa0al. Consensus guidelines for improving patients’ understanding of invasive fungal disease and related risk prevention in the haematology/oncology setting, 2021. Intern Med J. 2021;51(S7):220-233. doi:10.1111/imj.15593’}, {‘Citation’: ‘Ng HS, Koczwara B, Roder D, Chan RJ, Vitry A. Patterns of health service utilisation among the Australian population with cancer compared with the general population. Aust Health Rev. 2020;44(3):470-479. doi:10.1071/AH18184’}, {‘Citation’: ‘Chang GY, Lee KH. Sino-cerebral aspergillosis due to chronic herbal medicine use. QJM Int J Med. 2003;96(5):379-379. doi:10.1093/qjmed/hcg054’}, {‘Citation’: ‘Oliver MR, Van Voorhis WC, Boeckh M, Mattson D, Bowden RA. Hepatic Mucormycosis in a bone marrow transplant recipient who ingested naturopathic medicine. Clin Infect Dis. 1996;22(3):521-524. doi:10.1093/clinids/22.3.521’}, {‘Citation’: ‘Parize P, Angebault C, de Fonbrune FS, et\xa0al. Naturotherapy as a potential source of mould infections in patients with haematological malignancies. J Hosp Infect. 2013;85(2):163-164. doi:10.1016/j.jhin.2013.06.017’}, {‘Citation’: ‘Slavin MA, Osborne B, Adams R, et\xa0al. Efficacy and safety of Fluconazole Prophylaxis for fungal infections after marrow transplantation-A prospective, randomized, double-blind study. J Infect Dis. 1995;171(6):1545-1552. doi:10.1093/infdis/171.6.1545’}, {‘Citation’: ‘Coussement J, Lindsay J, Teh BW, Slavin M. Choice and duration of antifungal prophylaxis and treatment in high-risk haematology patients. Curr Opin Infect Dis. 2021;34(4):297-306. https://journals.lww.com/co-infectiousdiseases/Fulltext/2021/08000/Choice_and_duration_of_antifungal_prophylaxis_and.5.aspx’}, {‘Citation’: ‘Bow EJ, Vanness DJ, Slavin M, et\xa0al. Systematic review and mixed treatment comparison meta-analysis of randomized clinical trials of primary oral antifungal prophylaxis in allogeneic hematopoietic cell transplant recipients. BMC Infect Dis. 2015;15(1):128. doi:10.1186/s12879-015-0855-6’}, {‘Citation’: ‘Zhao YJ, Khoo AL, Tan G, et\xa0al. Network meta-analysis and pharmacoeconomic evaluation of fluconazole, itraconazole, posaconazole, and voriconazole in invasive fungal infection prophylaxis. Antimicrob Agents Chemother. 2015;60(1):376-386. doi:10.1128/aac.01985-15’}, {‘Citation’: ‘Lindsay J, Othman J, Kong Y, et\xa0al. SUBA-itraconazole for primary antifungal prophylaxis after allogeneic hematopoietic cell transplantation. Open Forum Infect Dis. 2021;8(11):ofab502. doi:10.1093/ofid/ofab502’}, {‘Citation’: ‘Nield B, Larsen SR, van Hal SJ. Clinical experience with new formulation SUBA®-itraconazole for prophylaxis in patients undergoing stem cell transplantation or treatment for haematological malignancies. J Antimicrob Chemother. 2019;74(10):3049-3055. doi:10.1093/jac/dkz303’}, {‘Citation’: ‘Fontana L, Perlin DS, Zhao Y, et\xa0al. Isavuconazole prophylaxis in patients with hematologic malignancies and hematopoietic cell transplant recipients. Clin Infect Dis. 2020;70(5):723-730. doi:10.1093/cid/ciz282’}, {‘Citation’: ‘Nguyen MH, Ostrosky-Zeichner L, Pappas PG, et\xa0al. Real-world use of mold-active triazole prophylaxis in the prevention of invasive fungal diseases: Results from a subgroup analysis of a multicenter national registry. Open Forum Infect Dis. Published online August 7, 2023;10(9):ofad424. doi:10.1093/ofid/ofad424’}, {‘Citation’: ‘Rausch CR, DiPippo AJ, Bose P, Kontoyiannis DP. Breakthrough fungal infections in patients with leukemia receiving Isavuconazole. Clin Infect Dis. 2018;67(10):1610-1613. doi:10.1093/cid/ciy406’}, {‘Citation’: ‘Azanza J, Mensa J, Barberán J, et\xa0al. Recommendations on the use of azole antifungals in hematology-oncology patients. Rev Espanola Quimioter. 2023;36(3):236-258. doi:10.37201/req/013.2023’}, {‘Citation’: ‘Fisher BT, Zaoutis T, Dvorak CC, et\xa0al. Effect of caspofungin vs fluconazole prophylaxis on invasive fungal disease among children and young adults with acute myeloid leukemia: a randomized clinical trial. JAMA. 2019;322(17):1673-1681. doi:10.1001/jama.2019.15702’}, {‘Citation’: ‘Epstein DJ, Seo SK, Huang YT, et\xa0al. Micafungin versus posaconazole prophylaxis in acute leukemia or myelodysplastic syndrome: a randomized study. J Infect. 2018;77(3):227-234. doi:10.1016/j.jinf.2018.03.015’}, {‘Citation’: ‘Maertens JA, Girmenia C, Brüggemann RJ, et\xa0al. European guidelines for primary antifungal prophylaxis in adult haematology patients: summary of the updated recommendations from the European Conference on Infections in Leukaemia. J Antimicrob Chemother. 2018;73(12):3221-3230. doi:10.1093/jac/dky286’}, {‘Citation’: ‘Chau MM, Daveson K, Alffenaar JWC, et\xa0al. Consensus guidelines for optimising antifungal drug delivery and monitoring to avoid toxicity and improve outcomes in patients with haematological malignancy and haemopoietic stem cell transplant recipients, 2021. Intern Med J. 2021;51(S7):37-66. doi:10.1111/imj.15587’}, {‘Citation’: ‘Lamoth F, Chung SJ, Damonti L, Alexander BD. Changing epidemiology of invasive mold infections in patients receiving azole Prophylaxis. Clin Infect Dis. 2017;64(11):1619-1621. doi:10.1093/cid/cix130’}, {‘Citation’: ‘Downes KJ, Goldman JL. Too much of a good thing: defining antimicrobial therapeutic targets to minimize toxicity. Clin Pharmacol Ther. 2021;109(4):905-917. doi:10.1002/cpt.2190’}, {‘Citation’: ‘Hope W, Johnstone G, Cicconi S, et\xa0al. Software for dosage individualization of voriconazole: a prospective clinical study. Antimicrob Agents Chemother. 2019;63(4):e02353-18. doi:10.1128/aac.02353-18’}, {‘Citation’: ‘Park WB, Kim NH, Kim KH, et\xa0al. The effect of therapeutic drug monitoring on safety and efficacy of voriconazole in invasive fungal infections: a randomized controlled trial. Clin Infect Dis. 2012;55(8):1080-1087. doi:10.1093/cid/cis599’}, {‘Citation’: ‘Trubiano JA, Crowe A, Worth LJ, Thursky KA, Slavin MA. Putting CYP2C19 genotyping to the test: utility of pharmacogenomic evaluation in a voriconazole-treated haematology cohort. J Antimicrob Chemother. 2015;70(4):1161-1165. doi:10.1093/jac/dku529’}, {‘Citation’: ‘Wang G, Lei HP, Li Z, et\xa0al. The CYP2C19 ultra-rapid metabolizer genotype influences the pharmacokinetics of voriconazole in healthy male volunteers. Eur J Clin Pharmacol. 2009;65(3):281-285. doi:10.1007/s00228-008-0574-7’}, {‘Citation’: ‘van den Born DA, Märtson AG, Veringa A, et\xa0al. Voriconazole exposure is influenced by inflammation: a population pharmacokinetic model. Int J Antimicrob Agents. 2023;61(4):106750. doi:10.1016/j.ijantimicag.2023.106750’}, {‘Citation’: ‘Mangal N, Hamadeh IS, Arwood MJ, et\xa0al. Optimization of voriconazole therapy for the treatment of invasive fungal infections in adults. Clin Pharmacol Ther. 2018;104(5):957-965. doi:10.1002/cpt.1012’}, {‘Citation’: ‘Nguyen MVH, Davis MR, Wittenberg R, et\xa0al. Posaconazole serum drug levels associated with pseudohyperaldosteronism. Clin Infect Dis. 2020;70(12):2593-2598. doi:10.1093/cid/ciz741’}, {‘Citation’: ‘Martino J, Fisher BT, Bosse KR, Bagatell R. Suspected posaconazole toxicity in a pediatric oncology patient. Pediatr Blood Cancer. 2015;62(9):1682-1682. doi:10.1002/pbc.25568’}, {‘Citation’: ‘Glasmacher A, Hahn C, Molitor E, Marklein G, Sauerbruch T, Schmidt-Wolf IGH. Itraconazole trough concentrations in antifungal prophylaxis with six different dosing regimens using hydroxypropyl-β-cyclodextrin oral solution or coated-pellet capsules. Mycoses. 1999;42(11-12):591-600. doi:10.1046/j.1439-0507.1999.00518.x’}, {‘Citation’: ‘McCreary EK, Davis MR, Narayanan N, et\xa0al. Utility of triazole antifungal therapeutic drug monitoring: insights from the Society of Infectious Diseases Pharmacists. Pharmacother J Hum Pharmacol Drug Ther. 2023;43(10):1043-1050. doi:10.1002/phar.2850’}], ‘ReferenceList’: [], ‘Title’: ‘REFERENCES’}], ‘History’: [DictElement({‘Year’: ‘2023’, ‘Month’: ’10’, ‘Day’: ’15’}, attributes={‘PubStatus’: ‘revised’}), DictElement({‘Year’: ‘2023’, ‘Month’: ‘8’, ‘Day’: ’14’}, attributes={‘PubStatus’: ‘received’}), DictElement({‘Year’: ‘2023’, ‘Month’: ’11’, ‘Day’: ‘6’}, attributes={‘PubStatus’: ‘accepted’}), DictElement({‘Year’: ‘2023’, ‘Month’: ’12’, ‘Day’: ’11’, ‘Hour’: ’12’, ‘Minute’: ’43’}, attributes={‘PubStatus’: ‘medline’}), DictElement({‘Year’: ‘2023’, ‘Month’: ’11’, ‘Day’: ’21’, ‘Hour’: ’18’, ‘Minute’: ’43’}, attributes={‘PubStatus’: ‘pubmed’}), DictElement({‘Year’: ‘2023’, ‘Month’: ’11’, ‘Day’: ’21’, ‘Hour’: ’12’, ‘Minute’: ’42’}, attributes={‘PubStatus’: ‘entrez’})], ‘PublicationStatus’: ‘ppublish’, ‘ArticleIdList’: [StringElement(‘37988269’, attributes={‘IdType’: ‘pubmed’}), StringElement(‘10.1111/tid.14197’, attributes={‘IdType’: ‘doi’})]}}], ‘PubmedBookArticle’: []}

本文链接地址:https://omssurgeon.com/2402/